Extreme Weather Events and Environmental Attitudes and Behaviour: A Large-Scale Longitudinal Approach in the UK

Tobias Rüttenauer

Nuffield College, University of Oxford

Analytical Sociology: Theory and Empirical Applications November 17, 2020

Motivation

Climate change is happening now

'Recent climate changes have had widespread impacts on human and natural systems.' (IPCC, 2014, p.2)

Motivation

Climate change is happening now

'Recent climate changes have had widespread impacts on human and natural systems.' (IPCC, 2014, p.2)

Worry about climate change in UK

The effects of climate change are too far in the future to really worry me

Analytical Strategy

Understanding Society wave 4 (2012-2014), N = 29,520

Research question

Why do people not care about climate change?

- Severe impacts are distant (time & space)
- No first hand experience of climate change
- But: extreme weather events will increase, also in Europe (e.g. Roudier et al., 2016)

Research question

Why do people not care about climate change?

- Severe impacts are distant (time & space)
- No first hand experience of climate change
- But: extreme weather events will increase, also in Europe
- (e.g. Roudier et al., 2016)

Research question

Does the personal exposure to extreme weather events (floods + heatwaves) increase people's belief in climate change and their pro-environmental behaviour?

Theoretical background

General assumption

- Risk assessment requires cognitive effort and motivation
- Both are a scarce resources

(e.g. Myers et al., 2013; Spence et al., 2012)

Motivation

Background

Analytical Strategy

esults

Conclusions

Theoretical background

General assumption

- Risk assessment requires cognitive effort and motivation
- Both are a scarce resources

Experiential processing

- Increases mental accessibility of abstract climate change
- Induces stronger emotional feelings
- Reduces the perceived spatial and temporal distance
 Higher risk perception
- \Rightarrow New evidence used to update prior beliefs
- \Rightarrow Change behaviour
- \Rightarrow Stronger effect with spatial & temporal proximity
- (e.g. Myers et al., 2013; Spence et al., 2012)

Previous findings

Meta-analyses

Hornsey et al. (2016); van Valkengoed and Steg (2019)

- Positive correlations between
 - past experience and beliefs
 - past experience and pro-environmental behaviour
- Effect size is relatively small
- Strong temporal decay

Previous findings

Meta-analyses

Hornsey et al. (2016); van Valkengoed and Steg (2019)

- Positive correlations between
 - past experience and beliefs
 - past experience and pro-environmental behaviour
- Effect size is relatively small
- Strong temporal decay

Three problems (Howe et al., 2019)

- Small cross-sectional ad-hoc surveys
- Large-scale spatial patterns not random
- Self-selection into neighbourhoods

Two exceptions: Baccini and Leemann (2020); Hazlett and Mildenberger (2020)

This study

Effect of floods

- on climate change beliefs
- on pro-environmental behaviour
- Role of spatial proximity

Effect of heatwaves

- on climate change beliefs
- on pro-environmental behaviour
- Role of temporal proximity

This study

Effect of floods

- on climate change beliefs
- on pro-environmental behaviour
- Role of spatial proximity

Effect of heatwaves

- on climate change beliefs
- on pro-environmental behaviour
- Role of temporal proximity

Methodological advances

- Nationally representative individual level data
- Account for large-scale spatial patterns
- Account for selection into 'treatment'

Individual level data

BHPS / UKHLS

- ▶ Waves BHPS 18 + UKHLS 1 and UKHLS 4 (2008-2014)
- Up to 85,447 observations and 58,841 individuals
- LSOA regional identifier (around 1,500 inhabitants)

Individual level data

BHPS / UKHLS

- ▶ Waves BHPS 18 + UKHLS 1 and UKHLS 4 (2008-2014)
- Up to 85,447 observations and 58,841 individuals
- LSOA regional identifier (around 1,500 inhabitants)

Variables

- Belief in climate change (0 / 1) 'People in the UK will be affected by climate change in the next 30 years'
- Pro-environmental behaviour (1 5)
 7 items, e.g. TV on standby, switch off light, turning heating up, using own bags for shopping, do not buy because of packaging
- Controls: age (5 year intervals), sex, UK-born, ethnic group, highest education, child(ren) in the household, marital status, household income, household income squared, and political party preference

Flood indicator

Environment Agency's Recorded Flood Outlines

- England only
- Buffer around population weighted centroid of LSOA
- Rule: ≥ 1 hectare flooded (10,000m²)
- Temporal cut-off: within past 2 years
- Spatial distance: 5km, 2km, 500m
- Merging done with all waves

Analytical Strategy

Heatwave indicator

HadUK-Grid Weather data (5×5 km grid)

- Entire UK
- Daily maximum temperature in LSOA
- ► Rule: at least 3 consecutive days ≥ 29°C
- Temporal distance:
 4 months, 1 month, 14 days
- Merging done with all waves

Analytical Strategy

Pooled OLS

$$y_{it} = \alpha + \tau_{it}\beta + \mathbf{x}_{it}\boldsymbol{\theta} + \eta_m + \eta_y + \epsilon_{it}, \qquad (1)$$

Within-person (FE)

$$y_{it} = \tau_{it}\beta + \mathbf{z}_{it}\boldsymbol{\theta} + \alpha_i + (\eta_m + \eta_y) * \delta_i + \epsilon_{it}, \qquad (2)$$

Motivation

Background

Analytical Strategy

Descriptives

Floods and climate change belief

Motivation

Background

Analytical Strateg

Results

10 / 14

Descriptives

Heatwaves and pro-environmental behaviour

Results

11 / 14

Floods

Floods

Floods

12 / 14

Heatwaves

Heatwaves

13 / 14

Heatwaves

13 / 14

Conclusions

Exposure to extreme weather events

- Increases belief in climate change
- Effect increases with spatial and temporal proximity
- Substantial effect size: 8.1% (for floods 500m)
- But: low incidence rate of 0.9%
- \Rightarrow Overall sample mean effect: + 0.1%-points
- \Rightarrow Strong spatial and temporal decay

Conclusions

Exposure to extreme weather events

- Increases belief in climate change
- Effect increases with spatial and temporal proximity
- Substantial effect size: 8.1% (for floods 500m)
- But: low incidence rate of 0.9%
- \Rightarrow Overall sample mean effect: + 0.1%-points
- \Rightarrow Strong spatial and temporal decay

Exposure to extreme weather events

- Does not chance environmental behaviour
- Effect sizes are negligible
- Independent of proximity

Motivation

Thank you very much!

- Baccini, L. and Leemann, L. (2020), Do natural disasters help the environment? How voters respond and what that means, *Political Science Research and Methods*, 60:1–17.
- Brügger, A., Dessai, S., Devine-Wright, P., Morton, T. A., and Pidgeon, N. F. (2015), Psychological responses to the proximity of climate change, *Nature Climate Change*, 5(12):1031–1037.
- Druckman, J. N. and McGrath, M. C. (2019), The evidence for motivated reasoning in climate change preference formation, *Nature Climate Change*, 9(2):111–119.
- Hazlett, C. and Mildenberger, M. (2020), Wildfire Exposure Increases Pro-Environment Voting within Democratic but Not Republican Areas, American Political Science Review, 58:1–7.
- Hornsey, M. J., Harris, E. A., Bain, P. G., and Fielding, K. S. (2016), Meta-analyses of the determinants and outcomes of belief in climate change, *Nature Climate Change*, 6(6):622–626.
- Howe, P. D., Marlon, J. R., Mildenberger, M., and Shield, B. S. (2019), How will climate change shape climate opinion?, *Environmental Research Letters*, 14(11):113001.
- IPCC (2014), Climate change 2014: Synthesis report. IPCC, Geneva.
- Myers, T. A., Maibach, E. W., Roser-Renouf, C., Akerlof, K., and Leiserowitz, A. A. (2013), The relationship between personal experience and belief in the reality of global warming, *Nature Climate Change*, 3(4):343–347.
- Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., and Ludwig, F. (2016), Projections of future floods and hydrological droughts in Europe under a +2C global warming, *Climatic Change*, 135(2):341–355.
- Spence, A., Poortinga, W., and Pidgeon, N. (2012), The psychological distance of climate change, *Risk Analysis*, 32(6):957–972.
- van Valkengoed, A. M. and Steg, L. (2019), Meta-analyses of factors motivating climate change adaptation behaviour, Nature Climate Change, 9(2):158–163.

Working paper available and happy to share!

References

y Descr

ves Si

Single items

Probit

Placebo test

Theoretical background

Some doubts about experiential learning

- Motivated reasoning
- Attribution of past events to abstract climate change

(e.g. Brügger et al., 2015; Druckman and McGrath, 2019)

References

Theory [

Single

Pr

Placebo tes

Theoretical background

Some doubts about experiential learning

- Motivated reasoning
- Attribution of past events to abstract climate change

and about proximity

- Aversive arousal / feeling of resignation
- Proximate threats activate immediate needs / values
- Proximate threats induce defensive behaviours
- (e.g. Brügger et al., 2015; Druckman and McGrath, 2019)

Table: Estimation sample 1, summary statistics

Statistic	Ν	Mean	St. Dev.	Min	Max
Climate change belief	61,458	0.761	0.426	0	1
Flood affected (500m)	61,458	0.009	0.097	0	1
Flood affected (2km)	61,458	0.046	0.210	0	1
Flood affected (5km)	61,458	0.112	0.315	0	1
Age	61,458	46.204	17.918	16	100
Sex (female)	61,458	0.547	0.498	0	1
Migration background	61,458	0.147	0.354	0	1
Child(ren) in household	61,458	0.342	0.474	0	1
Household income (in thousand)	61,458	3.633	3.331	0.000	86.703
Ethnic background					
Any White	61,458	0.836	0.371	0	1
Mixed	61,458	0.019	0.138	0	1
Asian	61,458	0.093	0.290	0	1
Black	61,458	0.045	0.206	0	1
Other	61,458	0.008	0.089	0	1
Highest education					
GCSE etc	61,458	0.218	0.413	0	1
Degree	61,458	0.238	0.426	0	1
Other higher degree	61,458	0.114	0.317	0	1
nces A-level heary Descriptives	Single item 58	Propio04	Plagebootsst	0	17 / 14

Table: Estimation sample 2, summary statistics

Statistic	Ν	Mean	St. Dev.	Min	Max
Pro-environmental behaviour	65,770	3.217	0.680	1.000	5.000
Flood affected (500m)	65,770	0.009	0.095	0	1
Flood affected (2km)	65,770	0.045	0.207	0	1
Flood affected (5km)	65,770	0.113	0.316	0	1
Age	65,770	46.695	17.710	16	100
Sex (female)	65,770	0.565	0.496	0	1
Migration background	65,770	0.172	0.377	0	1
Child(ren) in household	65,770	0.349	0.477	0	1
Household income (in thousand)	65,770	3.551	3.273	0.000	86.703
Ethnic background					
Any White	65,770	0.808	0.394	0	1
Mixed	65,770	0.019	0.138	0	1
Asian	65,770	0.109	0.312	0	1
Black	65,770	0.054	0.226	0	1
Other	65,770	0.010	0.097	0	1
Highest education					
GCSE etc	65,770	0.214	0.410	0	1
Degree	65,770	0.234	0.423	0	1
Other higher degree	65,770	0.112	0.315	0	1
nces A-level heory Descriptives	Single Greener	Propit 05	Placebookst	0	18 / 14

Table: Estimation sample 3, summary statistics

Statistic	Ν	Mean	St. Dev.	Min	Max
Climate change belief	80,004	0.766	0.423	0	1
Heatwave affected (14 days)	80,004	0.016	0.125	0	1
Heatwave affected (1 month)	80,004	0.028	0.165	0	1
Heatwave affected (4 months)	80,004	0.069	0.254	0	1
Age	80,004	46.660	17.967	16	100
Sex (female)	80,004	0.551	0.497	0	1
Migration background	80,004	0.124	0.330	0	1
Child(ren) in household	80,004	0.338	0.473	0	1
Household income (in thousand)	80,004	3.553	3.253	0.000	92.486
Ethnic background					
Any White	80,004	0.869	0.338	0	1
Mixed	80,004	0.016	0.125	0	1
Asian	80,004	0.074	0.262	0	1
Black	80,004	0.035	0.183	0	1
Other	80,004	0.007	0.082	0	1
Highest education					
GCSE etc	80,004	0.216	0.412	0	1
Degree	80,004	0.227	0.419	0	1
Other higher degree	80,004	0.115	0.319	0	1
nces A-level heary Descriptives	Single mod	Propion7	Placebookst	0	19 / 14

Table: Estimation sample 4, summary statistics

Statistic	Ν	Mean	St. Dev.	Min	Max
Pro-environmental behaviour	85,447	3.201	0.679	1.000	5.000
Heatwave affected (14 days)	85,447	0.017	0.129	0	1
Heatwave affected (1 month)	85,447	0.029	0.169	0	1
Heatwave affected (4 months)	85,447	0.073	0.261	0	1
Age	85,447	47.227	17.765	16	100
Sex (female)	85, 447	0.569	0.495	0	1
Migration background	85, 447	0.144	0.351	0	1
Child(ren) in household	85, 447	0.343	0.475	0	1
Household income (in thousand)	85,447	3.477	3.192	0.000	92.486
Ethnic background					
Any White	85,447	0.847	0.360	0	1
Mixed	85,447	0.016	0.125	0	1
Asian	85,447	0.087	0.281	0	1
Black	85, 447	0.042	0.201	0	1
Other	85, 447	0.008	0.089	0	1
Highest education					
GCSE etc	85,447	0.211	0.408	0	1
Degree	85, 447	0.222	0.416	0	1
Other higher degree	85,447	0.114	0.317	0	1
nces A-level heary Descriptives	Single der 247	Propit 08	Planeboologst	0	20 / 14

Pro-environmental behaviour items

Climate change belief: probit models

22 / 14

Placebo tests: floods

Placebo test: heatwaves

24 / 14