A Collapse of Kindness?
Repetition Effects in Laboratory Experiments.

Bastian Baumeister and Roger Berger

Venice International University - Analytische Soziologie

20.11.2017
Social-scientific lab experiments often follow similar patterns
Introduction

- Social-scientific lab experiments often follow similar patterns
- Subjects typically recruited via subject pools (In Leipzig: http://lex.sozphil.uni-leipzig.de/)
Social-scientific lab experiments often follow similar patterns

Subjects typically recruited via subject pools (In Leipzig: http://lex.sozphil.uni-leipzig.de/)

Research question: Does the behaviour of subjects that participate repeatedly in experiments in one lab change over time? ➔ repetition effects
Social-scientific lab experiments often follow similar patterns

Subjects typically recruited via subject pools (In Leipzig: http://lex.sozphil.uni-leipzig.de/)

Research question: Does the behaviour of subjects that participate repeatedly in experiments in one lab change over time? → repetition effects

If yes, how can we explain this change in behaviour?
State of Research

- Early non-systematic results listed in Camerer (2003), Ledyard (1995)
State of Research

- Early non-systematic results listed in Camerer (2003), Ledyard (1995)
 - Typically only short delays between two sessions, participants were informed before experiment
State of Research

- Early non-systematic results listed in Camerer (2003), Ledyard (1995)
 - Typically only short delays between two sessions, participants were informed before experiment
 - Increasingly "rational" behaviour in symmetric games with pure equilibria (similar to iterated games)
State of Research

- Berger (2015) shows that complex procedures and descriptions may lead to subjects "acting save".
- Subjects participated twice in a PD with complex anonymization procedures; behaviour changed radically (much closer to Nash equilibrium)
State of Research

- Berger (2015) shows that complex procedures and descriptions may lead to subjects "acting safe".
 - Subjects participated twice in a PD with complex anonymization procedures; behaviour changed radically (much closer to Nash equilibrium)
- Berger & Baumeister (2017):
 1. cognitive learning processes between two experimental sessions, even if they are months apart
State of Research

- Berger (2015) shows that complex procedures and descriptions may lead to subjects "acting save".
 - Subjects participated twice in a PD with complex anonymization procedures; behaviour changed radically (much closer to Nash equilibrium)

- Berger & Baumeister (2017):
 1. cognitive learning processes between two experimental sessions, even if they are months apart
 2. strong evidence for "social learning" of conditional cooperators: bad experiences turn cooperators to defectors in a PD, but ...
... a sizeable amount of cooperators "turn heel" without having experienced defection by alter.

This effect seems to occur in addition to cognitive and/or social learning processes,

A change of preferences occurs.
... a sizeable amount of cooperators "turn heel" without having experienced defection by alter.

This effect seems to occur in addition to cognitive and/or social learning processes,

A change of preferences occurs.

We term this effect the "Collapse of Kindness"

Can we reproduce this effect?
Design and Treatment

To avoid selection bias: subjects of both groups were randomly selected from the same sample that participated in sessions during May/June 2016.

Anonymity treatment in 4 Levels: low, typical, high, online.

<table>
<thead>
<tr>
<th>Group</th>
<th>May/June 2016</th>
<th>October/November 2016</th>
<th>January/February 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>O_1</td>
<td>O_2</td>
<td>(O_3)</td>
</tr>
<tr>
<td>G2</td>
<td>O_1</td>
<td></td>
<td>O_2</td>
</tr>
</tbody>
</table>
To avoid selection bias: subjects of both groups were randomly selected from the same sample that participated in sessions during May/June 2016.

<table>
<thead>
<tr>
<th></th>
<th>May/June 2016</th>
<th>October/November 2016</th>
<th>January/February 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>O_1</td>
<td>O_2</td>
<td>(O_3)</td>
</tr>
<tr>
<td>G2</td>
<td>O_1</td>
<td></td>
<td>O_2</td>
</tr>
</tbody>
</table>
Design and Treatment

<table>
<thead>
<tr>
<th></th>
<th>May/June 2016</th>
<th>October/November 2016</th>
<th>January/February 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>O_1</td>
<td>O_2</td>
<td>(O_3)</td>
</tr>
<tr>
<td>G2</td>
<td>O_1</td>
<td></td>
<td>O_2</td>
</tr>
</tbody>
</table>

- To avoid selection bias: subjects of both groups were randomly selected from the same sample that participated in sessions during May/June 2016.
- Anonymity treatment in 4 Levels: low, typical, high, online.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Experimental Procedure</th>
<th>Design and Treatment</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baumeister, Berger
A Collapse of Kindness?
Design and Treatment

Setting
Setting

- Experiment comprises 5 oneshot decision situations: DG, UG-A, UG-B, TG-A, TG-B
Setting

- Experiment comprises 5 oneshot decision situations: DG, UG-A, UG-B, TG-A, TG-B
- **Focus on Dictator Game**
 - "Beliefs" and strategic considerations are irrelevant, game is as simple as it gets
 - Equilibrium: A ("Dictator") makes smallest possible offer
 - Suitable as a direct measurement of "Kindness"
 - Showup-Fee: 2.50 Euro, Endowment of Dictator: 10 Euro
Experiment comprises 5 oneshot decision situations: DG, UG-A, UG-B, TG-A, TG-B

Focus on Dictator Game
- "Beliefs" and strategic considerations are irrelevant, game is as simple as it gets
- Equilibrium: A ("Dictator") makes smallest possible offer
- Suitable as a direct measurement of "Kindness"
- Showup-Fee: 2.50 Euro, Endowment of Dictator: 10 Euro

Order of played games was randomized, as was the game and role to be payed off

Concluding questionnaire: demographics, motivation, trust scale, risk scale, patience, etc.
• Teilnehmer A erhält 10,00 Euro von der Studienleitung.
• Teilnehmer A teilt diesen Betrag zwischen sich und Teilnehmer B auf.
• Dabei kann Teilnehmer A dem Teilnehmer B einen Betrag zwischen 0,00 und 10,00 Euro zuteilen.
• Teilnehmer B erhält den zuteilten Betrag.
• Teilnehmer A erhält den Rest.

Hier ein Beispielvideo:

Sie bearbeiten diese Aufgabe als Teilnehmer A.
Ihnen wird dabei ein Studententeilnehmer anonym zugelost.
- Teilnehmer A erhält 10,00 Euro von der Studienleitung.
- Teilnehmer A teilt diesen Betrag zwischen sich und Teilnehmer B auf.
- Dabei kann Teilnehmer A dem Teilnehmer B einen Betrag zwischen 0,00 und 10,00 Euro zuteilen.

- Teilnehmer B erhält den zugeteilten Betrag.
- Teilnehmer A erhält den Rest.

Hier ein Beispielvideo:

Sie bearbeiten diese Aufgabe als Teilnehmer A. Ihnen wird dabei ein Studententeilnehmer anonym zugelost.

Sie sind Teilnehmer A.
Bitte teilen Sie die 10,00 Euro auf.

Welchen Betrag teilen Sie Teilnehmer B zu?

<table>
<thead>
<tr>
<th>Betrag</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 Euro</td>
<td></td>
</tr>
<tr>
<td>1,00 Euro</td>
<td></td>
</tr>
<tr>
<td>2,00 Euro</td>
<td></td>
</tr>
<tr>
<td>3,00 Euro</td>
<td></td>
</tr>
<tr>
<td>4,00 Euro</td>
<td></td>
</tr>
<tr>
<td>5,00 Euro</td>
<td></td>
</tr>
<tr>
<td>6,00 Euro</td>
<td></td>
</tr>
<tr>
<td>7,00 Euro</td>
<td></td>
</tr>
<tr>
<td>8,00 Euro</td>
<td></td>
</tr>
<tr>
<td>9,00 Euro</td>
<td></td>
</tr>
<tr>
<td>10,00 Euro</td>
<td></td>
</tr>
</tbody>
</table>
Who returned?

- In O_1: 484 subjects
- G_1, O_2: 116
- G_2, O_2: 106
- 46% of all subjects returned, relatively even split into both groups
Logit, DV: Returned to repeated experiment (yes, no)

Additional controls: payoff game & role, first game played, field of study
Selection Effects: Miscellanea...

- No influence: risk attitude, scientific/monetary motivation, test score, total time needed, further demographics, experimental decisions during O1, experimenter (fortunately!)
Selection Effects: Miscellanea...

- No influence: risk attitude, scientific/monetary motivation, test score, total time needed, further demographics, experimental decisions during O1, experimenter (fortunately!)
- field of study: stem-students return more often, aspiring social scientists less often
OLS, DV: Difference in Decisions between both Observations

Additional controls: payoff game & role in O1, field of study
Repetition Effects: Miscellanea...

- No influence: risk attitude, scientific motivation, field of study, test score, total time needed (difference), further demographics, experimenter (fortunately!)
Repetition Effects: Miscellanea...

- No influence: risk attitude, scientific motivation, field of study, test score, total time needed (difference), further demographics, experimenter (fortunately!)
- Less "irrational" subjects in repeated experiments (between and within!, holds true for bonus observation O_3)
Repetition Effects: Miscellanea...

- No influence: risk attitude, scientific motivation, field of study, test score, total time needed (difference), further demographics, experimenter (fortunately!)
- Less "irrational" subjects in repeated experiments (between and within!, holds true for bonus observation O_3)
- Total time needed decreases from initially 13 min to about 9-10 min after one repetition (no further reduction in O_3)
"Collapse of Kindness" exists!

- Contributions in a DG decrease significantly by about 14% from first to second observation (time between observations does not matter)
"Collapse of Kindness" exists!

- Contributions in a DG decrease significantly by about 14% from first to second observation (time between observations does not matter)

- Preliminary explanation: Monetary motivation, individual trust and "rationality" seem to account for some of the variation

- Theoretical framework still missing!
"Collapse of Kindness" exists!

- Contributions in a DG decrease significantly by about 14% from first to second observation (time between observations does not matter)

- Preliminary explanation: Monetary motivation, individual trust and "rationality" seem to account for some of the variation

- Theoretical framework still missing!

- Do not interpret marginals from laboratory experiments!
Conclusion & Discussion

- "Collapse of Kindness" exists!
 - Contributions in a DG decrease significantly by about 14% from first to second observation (time between observations does not matter)

- Preliminary explanation: Monetary motivation, individual trust and "rationality" seem to account for some of the variation

- Theoretical framework still missing!

- Do not interpret marginals from laboratory experiments!

- Control for "game rats"
Thank you for your attention!
UG: Offer by Proposer

- Low
- Typical
- High
- Online

Baumeister, Berger A Collapse of Kindness?
UG: MAO of Responder

- Low
- Typical
- High
- Online
TG: Transfer by Trustor

- Low
- Typical
- High
- Online

Baumeister, Berger
A Collapse of Kindness?
TG: Return by Trustee

- Low
- Typical
- High
- Online
UG: Offer by Proposer

Baumeister, Berger
A Collapse of Kindness?
TG: Transfer by Trustor

0% 10% 20% 30% 40% 50% 60% 70%

5m 8m 5m 8m 5m 8m 3m 8m

Baumeister, Berger A Collapse of Kindness?
UG: MAO of Responder

[Graph showing data for UG: MAO of Responder with different time intervals (5m, 8m, 3m, 8m) and percentage values (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%).]

Baumeister, Berger
A Collapse of Kindness? 25
TG: Return by Trustee

Baumeister, Berger
A Collapse of Kindness?
DG: Offer by Dictator (8m)