Embedded Trust: An Experiment on Learning and Control Effects

Vincent Buskens, Werner Raub & Joris van der Veer

Workshop “Rational Choice Sociology: Theory and Empirical Applications”
Venice International University
December 1-5, 2008
Trust by Example I

July 18, 2007: end date to purchase a copy of the first edition of *Theory of Games and Economic Behavior* by John von Neumann and Oskar Morgenstern at eBay from the seller “bibliomonomster” for US-$ 1,900.00. The item had a fixed price listing (eBay’s “Buy It Now” option) and could only be purchased without bidding in an auction. Item description: “Bound in original publishers red cloth a bit rubbed at head of spine. Black (ink?) mark on top board. Minor shelf wear, else very good. Internally, clean and free of ink, marginalia and soiling. No dogeared pages or tears. Includes the often missing corrigenda leaf. A nice, collectable copy.”
Trust by Example II

- A potential buyer at eBay has to decide whether to buy the rare first edition of a book offered by a seller and to send the money
- The seller, after receiving the money, has to decide whether or not to ship the book to the buyer
- If the seller ships and the book corresponds with the specifications, both buyer and seller are happier after the deal than before the deal
- If the seller does not ship the book, he can try to sell it again, while the buyer has lost her money
The Trust Game

- **Trustor/Buyer**
- **Trustee/Seller**

No trust

Trust

Abuse

Honor

\[
\begin{pmatrix}
P_1 \\ P_2
\end{pmatrix}
\]

\[
\begin{pmatrix}
S_1 \\ T_2
\end{pmatrix}
\]

\[
\begin{pmatrix}
R_1 \\ R_2
\end{pmatrix}
\]

\[S_1 < P_1 < R_1\]

\[P_2 < R_2 < T_2\]
Outline

1. Theory and hypotheses on embedded trust
2. Design of the experiment
3. Results
4. Related findings from other empirical studies using complementary research designs
5. Conclusions
Theory and Hypotheses on Embedded Trust
Embedded Trust

• Many trust situations (and other social and economic interactions) do not occur in isolated encounters but are embedded in a larger context of interactions (Granovetter *AJS* 1985), e.g.,
 • repeated transactions between the same actors
 • actors encounter partners of their partner

→ need to extend predictions for trust situations to embedded settings
Embeddedness Mechanisms

<table>
<thead>
<tr>
<th>Learning</th>
<th>Dyadic embeddedness</th>
<th>Network embeddedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common history of past</td>
<td>Common history of past interactions: information about the partner from own experiences</td>
<td>Information from third parties about their past experiences with the partner</td>
</tr>
<tr>
<td>interactions: information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about the partner from own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>experiences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Expected future interactions: opportunities for conditional cooperation via, e.g.,</td>
<td>Opportunities for conditional cooperation involving third parties: “voice” (reputation</td>
</tr>
<tr>
<td></td>
<td>“tit for tat”</td>
<td>effects)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Research Problem

- Distinguish between different embeddedness effects
 - theoretically
 - empirically

- We neglect:
 - strategic network formation: embeddedness is exogenous in the experiment
 - “non-selfish utility”: focus on trust as a result of “enlightened self-interest”
Available Formal Theories

<table>
<thead>
<tr>
<th></th>
<th>Dyadic embeddedness</th>
<th>Network embeddedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning</td>
<td>Adaptive learning models; information diffusion models</td>
<td></td>
</tr>
<tr>
<td>Learning and control</td>
<td>Models for repeated games with incomplete information</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Models for repeated games with complete information</td>
<td></td>
</tr>
</tbody>
</table>
Hypotheses – Summary

<table>
<thead>
<tr>
<th></th>
<th>Dyadic embeddedness</th>
<th>Network embeddedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning</td>
<td>Trust increases (decreases) with positive (negative) own experiences with the trustee</td>
<td>Trust increases (decreases) with positive (negative) information on the trustee received from other trustors</td>
</tr>
<tr>
<td>Control</td>
<td>Trust and trustworthiness increase with the likelihood of future interactions</td>
<td>Trust and trustworthiness increase with the trustor’s control opportunities through her network with other trustors</td>
</tr>
</tbody>
</table>
Design of the Experiment
Lab Experiment

- Subjects (mostly students) play repeated Trust Games in the lab
- Interactions are with actual other subjects in the lab
- Interactions are anonymous
- Complete game structure is provided in the instruction; no deception
- Points earned represent actual money for the subjects
Trust Game in the Lab Experiment

\[
\begin{array}{c|cc}
 & A & B \\
\hline
A & 10 & 10 \\
B & 0 & 40 \\
 & 20 & 20 \\
\end{array}
\]
Interaction Structure

- Two trustors play with the same trustee for 15 rounds ("triads")
- In each round, trustor 1 plays first, trustor 2 second
- Depending on experimental condition: information exchange about past behavior between trustors
Two Experimental Conditions

• **No information exchange** between trustors: each trustor only knows what happens in her own Trust Games with the trustee
 ➔ *opportunity for dyadic learning and control*
 ➔ *no opportunity for network learning and control*

• **Full information exchange** between trustors: after each Trust Game, also the trustor not involved in that game receives information on the choices made in that game
 ➔ *opportunity for dyadic learning and control*
 ➔ *opportunity for network learning and control*
Further Set-Up

• Both conditions: subjects know what kind of information everybody receives

• Each subject plays three supergames, in the same information condition, once as trustor 1, once as trustor 2, once as trustee

• Subjects were rematched between supergames; never rematched to other subjects they had already played with; rematching process was made common knowledge

• Experiment conducted in ELSE lab of UU, using z-Tree

• 72 subjects, i.e., data on 72 triads and 72x15x2 = 2160 Trust Games (1080 with and 1080 without information exchange between trustors)
Lab Experiment and Embeddedness Effects

Lab experiment allows to test hypotheses on effects of dyadic embeddedness and network embeddedness on trust and trustworthiness.
Results
Three-Level Logistic Regression

- Estimate probability to trust / honor trust conditional on past experiences, rounds to go, information condition

- Three-level random effects model:
 - Levels: decision – trustor – triad
 - 2160 decisions by 144 trustors in 72 triads
 - 1542 decisions by 72 trustees in 72 triads

- Clustering within trustors in different series of games neglected
 - Trustor level variance is small
 - Results are rather robust for the specification of random structure
Effects of Embeddedness on Trust

144 trustors

Proportion trust

Round

no info full info
Effects of Dyadic Embeddedness on Trust

- Trustors are more (less) likely to trust...
 - after having experienced more honored (abused) trust in own interactions with trustee (dyadic learning)
 - the larger the number of rounds still to be played (also: strong endgame effect) (dyadic control)

→ Support for hypotheses on dyadic learning and on dyadic control effects on trustor behavior
Effects of Network Embeddedness on Trust

• Evidence for *network learning* effects on trustor behavior: trustors are more (less) likely to trust after having observed more honored (abused) trust in the *other* trustor’s interactions with the trustee.

• No evidence for *network control* effects on trustor behavior: no main effect of information condition; no interaction effect of information condition with rounds still to be played; decrease of trust does *not* start later in condition with full information exchange between trustors.
Effects of Embeddedness on Trustworthiness

- Proportion honored trust
- Round
- 72 trustees

Graph:
- No info line (blue dots)
- Full info line (red triangles)

Universiteit Utrecht
Effects of Dyadic Embeddedness on Trustworthiness

• Trustees are more likely to honor trust the larger the number of rounds still to be played with the respective trustor
 • Also: strong endgame effect

 ➤ Support for hypotheses on dyadic control effects on trustee behavior
Effects of Network Embeddedness on Trustworthiness

- Positive effect of full information condition on likelihood of honoring trust

- Endgame effect stronger for interactions with trustor 2 (who has less control opportunities than trustor 1)

→ Support for hypotheses on network control effects on trustee behavior
Puzzle

- **Trustee** reacts to trustor’s opportunities for
 - dyadic control and
 - network control
 ➔ Trustee seemingly takes reputation effects of his behavior into account

- Focal *trustor* reacts to her own opportunities for *dyadic control*

- Focal *trustor* does *not* react to her own opportunities for *network control*
Related Findings from Other Empirical Studies Using Complementary Research Designs
Evidence on Embeddedness Effects from Complementary Research Designs

• Idea: use complementary research designs (survey, vignette study, lab experiment) for multiple tests of the same hypotheses (cf.: triangulation, cross validation)

• Similar perspective:
Alternative Designs: Advantages and Disadvantages

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey</td>
<td>Actual interactions</td>
<td>Measurement problems; less control over variables</td>
</tr>
<tr>
<td>Lab experiment</td>
<td>Control over incentives and embeddedness variables</td>
<td>Abstract; external validity</td>
</tr>
<tr>
<td>Vignette study</td>
<td>Less abstract than lab experiments; control over variables</td>
<td>Hypothetical interactions; lack of “incentive compatibility”</td>
</tr>
</tbody>
</table>
Summary of Empirical Evidence

<table>
<thead>
<tr>
<th></th>
<th>Survey</th>
<th>Vignette study</th>
<th>Lab experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyadic learning</td>
<td>• Consistent support for dyadic learning and control effects on trust of trustor</td>
<td>• Quite some support for dyadic control effects on trustworthiness of trustee</td>
<td></td>
</tr>
<tr>
<td>Dyadic control</td>
<td>• Quite some support for dyadic control effects on trustworthiness of trustee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network learning</td>
<td>• Quite some support for network learning effects on trust of trustor</td>
<td>• No support for network control effects on trust of trustor</td>
<td></td>
</tr>
<tr>
<td>Network control</td>
<td>• Consistent support for network control effects on trustworthiness of trustee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **Dyadic learning** refers to learning in a paired or dyadic context.
- **Dyadic control** refers to control effects within a dyadic setting.
- **Network learning** refers to learning within a network or group context.
- **Network control** refers to control effects within a network or group context.
Conclusions
Once again the Puzzle

- **Trustee** reacts to trustor’s opportunities for
 - dyadic control and
 - network control
 ➔ Trustee seemingly takes reputation effects of his behavior into account

- **Trustor** reacts to her own opportunities for **dyadic control**

- **Trustor** does *not* react to her own opportunities for **network control**
How (not) to Explain the Puzzle?

• Data and/or measurement problems (including sample selectivity and endogeneity of network embeddedness) could be (part of) the reason why we do not find network control effects on trustor behavior in survey data (see Buskens 2002)

• Data and/or measurement problems are much less plausible reasons for the lack of network control effects on trustor behavior in the experiment
How to Explain the Puzzle: Limits of Strategic Rationality?

• **General idea**: Trustor anticipation on her own opportunities for network control involves *too many steps of iterated reasoning*, at least for inexperienced subjects

• **Network control effects on trustee behavior** require *only* that trustee anticipates that own present behavior affects future trust of the present or other trustors

• **Network control effects on trustor behavior** require that trustor anticipates that the trustee anticipates on effects of his present behavior on future trust of other trustors
Similar Arguments in the Literature

• Equilibrium behavior becomes less likely when actors have to reason many steps ahead

• Equilibrium behavior requires that actors are sufficiently “experienced”

(see, e.g., Binmore, Camerer, and Kreps)
Testable Implications of the Explanation of the Puzzle and Empirical Evidence

• In the experiment, trustors who have been in the role of trustee in an earlier game (and thus have more experience) should be more likely to react to network control opportunities. There is some support for this effect in our data.

• We also find support for network control effects on trustor behavior in one of our vignette studies with experienced subjects (purchase managers) in the trustor role.
Related Empirical Evidence from Other Research

Professionals tend to implement relatively complex equilibrium behavior as well as equilibrium behavior that requires quite some iterated reasoning, also in situations where *non-professionals* fail to do so:

- Professional soccer players (versus college students) in zero-sum games such as penalty kicks (but also strategically equivalent lab experiments): Palacios-Huerta & Volij; Berger & Hammer
- Chess Grandmasters versus college students in the Centipede Game: Palacios-Huerta & Volij
- ... quite some related empirical evidence
• Thanks for your attention

• Slides of presentation will be downloadable from workshop website

• Review paper on the literature on embeddedness effects on trust: Buskens & Raub (2008) Rational Choice Research on Social Dilemmas, *mimeo*, Utrecht – downloadable from our website

 www.fss.uu.nl/soc/iscore
Additional slides
Effects on Trust

<table>
<thead>
<tr>
<th>Information condition</th>
<th>No net effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abused own trust in past</td>
<td>−</td>
</tr>
<tr>
<td>Honored own trust in past</td>
<td>+</td>
</tr>
<tr>
<td>Abused other trust in past</td>
<td>−</td>
</tr>
<tr>
<td>Honored other trust in past</td>
<td>+</td>
</tr>
<tr>
<td>Rounds to go</td>
<td>+</td>
</tr>
<tr>
<td>Rounds to go × information</td>
<td>0</td>
</tr>
<tr>
<td>Round 14</td>
<td>−</td>
</tr>
<tr>
<td>Round 15</td>
<td>−</td>
</tr>
<tr>
<td>Info cond × round 14</td>
<td>0</td>
</tr>
<tr>
<td>Info cond × round 15</td>
<td>−</td>
</tr>
</tbody>
</table>
Effects on Trustworthiness

<table>
<thead>
<tr>
<th></th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information condition</td>
<td>+</td>
</tr>
<tr>
<td>Rounds to go</td>
<td>+</td>
</tr>
<tr>
<td>Rounds to go × information</td>
<td>−</td>
</tr>
<tr>
<td>Round 14</td>
<td>−</td>
</tr>
<tr>
<td>Round 15</td>
<td>−</td>
</tr>
<tr>
<td>Info cond × round 14 × trustor 2</td>
<td>−</td>
</tr>
<tr>
<td>Info cond × round 15 × trustor 2</td>
<td>−</td>
</tr>
</tbody>
</table>